伦敦 伦敦00:00:00 纽约 纽约00:00:00 东京 东京00:00:00 北京 北京00:00:00

400-668-6666

肥料效应

当前位置:网上棋牌网址 > 肥料效应 >
肥料效应

建立了不确定条件下对理性人(rational actor)选择进行分析的框架

  其中,E[u(X)]表示关于随机变量X的期望效用。因此U(X)称为期望效用函数,又叫做冯·诺依曼—摩根斯坦效用函数(VNM函数)。另外,要说明的是期望效用函数失去了保序性,不具有序数性。

  毕业生的决策是取决于他(她)关于选择某一个工作岗位的概率分布的主观猜测。如果他主观认为选择某一工作发展前景概率更高,那么,它就会选择,否则另谋出路。这就是我们必须从不确定性出发,考虑消费者的偏好与效用函数就得引进概率P使之变成期望效用函数。如果你选择的工作对象是两家IT公司,收入见下表。

  从不确定性出发,考虑人们的偏好与效用函数就得引进概率P。概率的效用函数表达式叫期望效用函数,如果把期望效用函数与大学生择业、就业结合就可以较简单地构造出就业期望效用函数探讨大学生就业的现象机制一般来讲是在条件确定时进行的经验或者理性的推导。但是,许多场合,那种以完全确定为前提的分析是不现实的。事实上,我们知道,毕业生在决策时,对于选择的后果是不完全知道的,具有不确定性,要冒一定的风险。

  (6)非可加性效用模型(non-additivity utility model)这类模型主要针对埃尔斯伯格悖论,该模型认为概率在其测量上是不可加的

  (2)扩展性效用模型(generalized utility model)。该类模型的特点是针对同结果效应和同比率效应等,放松预期效用函数的线性特征,或对公理化假设进行重新表述,模型将用概率三角形表示的预期效用函数线性特征的无差异曲线,扩展成体现局部线性近似的扇行展开。这些模型没有给出度量效用的原则,但给出了效用函数的许多限定条件。

  EU理论及SEU理论描述了“理性人”在风险条件下的决策行为。但实际上人并不是纯粹的理性人,决策还受到人的复杂的心理机制的影响。因此,EU理论对人的风险决策的描述性效度一直受到怀疑。例如,EU理论难以解释阿莱悖论Ellsberg悖论等现象;没有考虑现实生活中个体效用的模糊性主观概率的模糊性;不能解释偏好的不一致性、非传递性、不可代换性、“偏好反转现象”、观察到的保险和赌博行为;现实生活中也有对EU理论中理性选择上的优势原则和无差异原则的违背;实际生活中的决策者对效用函数的估计也违背EU理论的效用函数。

  (4)“后悔”的概念被引入,以解释共同比率效应和偏好的非传递性;如Loomes和Sudgen(1982)所提出的“后悔模型”引入了一种后悔函数,将效用奠定在个体对过去“不选择”结果的心理体验上(放弃选择后出现不佳结果感到庆幸,放弃选择后出现更佳结果感到后悔),对预期效用函数进行了改写(仍然保持了线)允许决策权重随得益的等级和迹象变化,这是对SWU的进一步发展。

  如果问自己:当a发生的概率(p)等于多少时使你认为a(i=1,2,3)与(

  以上提出的几条分别扩展为金融学中的几大经典成果,如Kahneman和Tversky(简称KT)提出的理论后来发展成为前景理论;而“后悔“概念演化为“后悔理论”。

  声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。详情

  (3)Kahneman和Tversky(1979)引入系统的非传递性和不连续性的概念,以解决优势违背问题;

  CE 被称作确定性等值(Certainty. Equivalent),即消费者为达到期望的效用水平所要求保证的财产水平。若某人的财富效用函数为u(x),而一个赌局对某人的效用为E(u(x)),则有一个CE值能够满足:u(CE)=E(u(x))。称CE为某人在该赌局中的确定性等值。

  期望收入=(结果1的概率)×(结果1的收入)+(结果2的概率)×(结果2

点击次数:  更新时间:2019-08-19 12:16   【打印此页】  【关闭
上一篇:词条创建和修改均免费   
下一篇:没有了
http://oddmoore.com/feiliaoxiaoying/84.html